

1 Soil carbon release responses to long-term versus short-term climatic 2 warming in an arid ecosystem

3

4 Hongying Yu^{1,2}, Zhenzhu Xu^{1,*}, Guangsheng Zhou^{1,3,*}, and Yaohui Shi^{1,3}

- 5 ¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,
- 6 Chinese Academy of Sciences, Beijing 100093, China
- 7 ²University of Chinese Academy of Sciences, Beijing, 100049, China
- 8 ³Chinese Academy of Meteorological Sciences, China Meteorological Administration,
- 9 Beijing 100081, China
- 10 *Authors for correspondence
- 11

12 Abstract. Climate change severely impacts grassland carbon cycling, especially

13 in arid ecosystems, such as desert steppes. However, little is known about the

14 responses of soil respiration (R_s) to different warming magnitudes and watering

15 pulses *in situ* in desert steppes. To examine their effects on R_s , we conducted long-

16 term moderate warming, short-term acute warming and watering field experiments

in a desert grassland of Northern China. While experimental warming significantly reduced R_s by 32.5% and 40.8% under long-term and moderate and short-term and

reduced R_s by 32.5% and 40.8% under long-term and moderate and short-term and acute warming regimes, respectively, watering pulses stimulated it substantially.

20 Warming did not change the exponential relationship between R_s and soil

21 temperature, whereas the relationship of R_s with soil water content (SWC) was well

22 fitted to the Gompertz function. The soil features were not significantly affected

23 by either long-term or short-term warming regimes, respectively; however, soil

organic carbon content tended to decrease with long-term climatic warming. This indicates that soil carbon release responses strongly depend on the duration and magnitude of climatic warming, which may be driven by SWC and soil

temperature. The results of this study highlight the great dependence of soil carbon emission on warming regimes of different durations and the important role of precipitation pulse during growing season in assessing the terrestrial ecosystem

- 30 carbon balance and cycle.
- 31

Key words: Long-term warming; Precipitation pulse; Soil carbon release;
Response sensitivity; Belowground feature; Desert grassland.

34

35 **1 Introduction**

The global carbon (C) cycle is a critical component in the earth's biogeochemical processes and plays a major role in global warming, which is mainly exacerbated by the elevated carbon dioxide (CO₂) concentration in the atmosphere (e.g., Falkowski et al. 2000; Carey et al. 2016; Ballantyne et al. 2017; Meyer et al. 2018). Soil respiration (R_s), mainly including the respiration of live roots and microorganisms, is a key component of the ecosystem C cycle as it releases *c*. 80

Pg of C from the pedosphere to the atmosphere annually (Boone et al., 1998; Karhu 42 43 et al., 2014; Liu et al., 2016; Ma et al., 2014; Schlesinger, 1977). The effects of 44 biotic and abiotic factors on R_s processes and the eco-physiological mechanism are 45 still poorly understood, particularly in arid and semiarid areas, where water and nutrients are both severely limited (e.g., Dacal et al., 2019; Fa et al., 2018; 46 47 Reynolds et al., 2015; Ru et al., 2018). The desert steppe is c. 8.8 million hm^2 , accounting for 22.6% of all grasslands 48 49 in China, and is located in both arid and semiarid areas. More than 50% of the total 50 area of the steppe is facing severe degradation in terms of the decline of community 51 productivity and soil nutrient depletion, primarily due to improper land use, such 52 as over-grazing and adverse climatic changes, including heat waves and drought 53 stresses (Bao et al., 2010; Kang et al., 2007). Global surface temperature-mainly caused by the anthropogenic CO_2 increase—is expected to increase from 2.6 to 4.8°C 54 55 by the end of this century (IPCC 2014). Moreover, the desert steppe ecosystem 56 with less vegetation cover is most vulnerable to its harsh environmental conditions, 57 such as scarce precipitation and barren soil nutrition, further leading to high sensitivity to climate change (Hou et al., 2013; Luo et al., 2018; Maestre et al., 58 59 2012; Yu et al., 2018).

60 Numerous studies have shown that soil temperature and moisture are the two 61 crucial factors that mainly control R_s . Soil temperature, however, is the primary factor driving temporal R_s variations (e.g., Carey et al., 2016; Gaumont-Guay et al., 62 63 2006; Li et al., 2008; Wan et al. 2005). Generally, R_s is significantly and positively 64 correlated with soil temperature when soil moisture is ample (Curiel et al., 2003; 65 Jia et al., 2006; Lin et al., 2011; Reynolds et al., 2015; Yan et al., 2013). In general, the seasonal variations of R_s coincide with the seasonal patterns of soil temperature 66 67 (Keith et al., 1997; Lin et al., 2011; Wan et al., 2007). For instance, Lin et al. (2011) reported that 63 to 83% of seasonal variations of R_s are dominantly controlled by 68 69 soil temperature. Diurnal R_s variations are highly associated with variations in soil 70 temperature (Drewitt et al., 2002; Jia et al., 2006; Song et al., 2015). Soil 71 respiration, according to previous studies, is expected to increase with soil water 72 content (SWC) (e.g., Chen et al., 2008; Song et al., 2015; Wan et al., 2007; Yan et 73 al., 2013). However, when the SWC exceeds the optimal point to reach saturated 74 levels, R_s decreases (Huxman et al., 2004; Kwon et al., 2019; Moyano et al., 2012; 75 Moyano et al., 2013; Wang et al., 2014). In a study conducted in a tall grass prairie, water addition dramatically increased soil CO₂ efflux (Liu et al., 2002). Liu et al. 76 77 (2009) showed a significant R_s increase after a precipitation pulse in a typical temperate steppe. Therefore, in arid and semiarid regions, where soil water is 78 79 limited, the SWC may control R_s , and regulate the warming effect (Chen et al., 80 2008; Curiel et al., 2003; Shen et al., 2015). Furthermore, the effect of watering 81 pulses depends on the pulse size, antecedent soil moisture conditions, soil texture 82 and plant cover (Cable et al., 2008; Chen et al., 2008; Shen et al., 2015).

Nevertheless, relative to drought stress, the watering pulse effect on R_s in the desert grassland remains undefined (Hoover et al., 2016).

85 A previous study reported the effects of relatively short-term (two-year) warming (2°C) on soil respiration (Liu et al., 2016). However, there is limited 86 information about the long-term (four-year) warming effects on R_s and the 87 underlying mechanism. Moreover, the dominant role of water status in R_s 88 responses to climatic change, such as watering pulse treatments, was also uncertain. 89 90 Thus, in the present study, we used a randomized block design with three 91 treatments: control (no warming, no watering), long-term and moderate warming 92 (four years extending from 2011 to 2014, about 3°C), and short-term and acute 93 warming (one year in 2014, about 4°C). Moreover, a watering pulse treatment (a 94 full irrigation to reach field capacity) was also established. We present the following hypotheses: (1) both long-term moderate and short-term acute warming 95 96 regimes could reduce soil CO₂ efflux in the desert grassland, whereas watering 97 pulses may stimulate it; and (2) The changes in R_s might be driven together by a 98 combination of soil temperature, soil moisture, and soil features.

99

100 **2 Methods and Materials**

101 2.1 Experimental site

102 The experiment was conducted in a desert steppe about 13.5 km from Bailingmiao in Damao County (110°19'53.3"E, 41°38'38.3"N; 1409 m above sea level), 103 104 situated in Nei Mongol, Northern China. This area is characterized by a typical 105 continental climate. The mean annual temperature of this area was 4.3°C with a minimum of -39.4°C and a maximum of 38.1°C from 1955 to 2014. The mean 106 107 annual precipitation is 256.4 mm and approximately 70% of the annual 108 precipitation is distributed in the growth season period occurring from June to 109 August (Supplementary Figure S1). According to Chinese classification, the soil 110 type is called "chestnut" (Calcic Kastanozems in the FAO soil classification) with a bulk density of 1.23 g·cm⁻³ and a pH of 7.4. The area has not been grazed since 111 1980; the dominant species is Stipa tianschanica var. klemenzii, accompanied by 112 Cleistogenes squarrosa, Neopallasia pectinata, Erodium stephanianum and 113 114 Artemisia capillaris (e.g., Hou et al., 2013). 115

116 2.2 Experimental design

The warming experiment used a randomized block design that included three treatments: control (no warming, no watering), long-term and moderate warming, and short-term and acute warming. The long-term and moderate warming plots were exposed to long-term warming from early June to late August (the growing season) for four years (2011–2014), while short-term and acute warming were manipulated only during the growing season (June to August) in 2014. Watering pulse treatments were conducted in August in 2014 and 2017. The control plots

received no additional treatments of either temperature or water (they were 124 125 recognized as warming or watering control treatments). All of the warmed plots 126 were heated 24 h/day by 1.0 m long infrared (IR) lamps (GHT220-800; Sanyuan Huahui Electric Light Source Co. Ltd., Beijing, China) at 800 W during growing 127 128 seasons in the experimental years (2011-2014). The IR lamp heights above the 129 ground were 1.5 m and 1.0 m in moderately and acutely warmed plots, respectively. The watering pulse plots were fully irrigated to field capacity to simulate a 130 131 watering pulse on August 19, 2014, and August 14, 2017. For the field warming 132 facility, to simulate the shading effects, the control plots were designed to install a 133 "dummy" heater similar to those used for the warmed plots. There were a total of 134 15 experimental plots $(2 \text{ m} \times 2 \text{ m})$ arranged in a 3×5 matrix with each treatment 135 randomly replicated once in each block across three experimental blocks; a 1 m buffer for each adjacent plot was made. 136

137

138 **2.3 Soil temperature and moisture**

At the center of each plot, a thermocouple (HOBO S-TMB-M006; Onset Computer
Corporation, Bourne, MA, USA) was installed at a depth of 5 cm to measure the
soil temperature, and a humidity transducer (HOBO S-SMA-M005; Onset
Computer Corporation, Bourne, MA, USA) was installed at a depth of 0 to 20 cm
to monitor the soil moisture. Continuous half-hour measurements were recorded
by an automatic data logger (HOBO H21-002; Onset Computer Corporation,
Bourne, MA, USA).

146

147 2.4 Soil respiration

The soil respiration was measured with a Li-8100 soil CO₂ Flux System (LI-COR 148 149 Inc., Lincoln, NE, USA) with the R_s chamber mounted on polyvinyl chloride (PVC) 150 collars. Fifteen PVC collars (10 cm inside diameter, 5 cm in height) were inserted 151 into the soil 2 to 3 cm below the surface. They were randomly placed into the soil 152 in each plot after clipping all plants growing in the collar placement areas. The 153 collars were initially placed a day before measurements were begun to minimize 154 the influence of soil surface disturbance and root injury on R_s (Bao et al., 2010; 155 Wan et al., 2005). Respirations for the control and all of the warmed plots were measured from 6:00 a.m. to 6:00 p.m. on July 7 and 8 and August 18, 19, 20 and 156 157 21, 2014. The R_s for watering pulse treatment was measured after the water additions on August 19, 2014, and August 14, 15, 16 and 17, 2017. To stabilize the 158 159 measurement, R_s was measured only on the selected typical days (i.e., mildly windy, sunny days). The R_s in all plots was measured once every 2 h on that day and each 160 161 measurement cycle was finished within 30 min to minimize the effects of 162 environmental variables, such as temperature and light. Thus, a total of six 163 measurement cycles was completed each day. The SWC (0-20 cm soil depth) in 164 watering plots was measured using the Field Scout TDR 300 Soil Moisture Meter

165 (Spectrum Technologies, Inc., Aurora, IL, USA).

166

167 2.5 Belowground biomass and related soil characteristics

168 Soil samples of 0 to 10 cm in depth were taken from each collar after the R_s measurements and then passed through a 1 mm sieve to separate the roots. The 169 roots were washed and oven-dried at 70°C for 48 h to a constant weight and then 170 weighed. Subsamples of each soil sample were separated to determine the 171 172 gravimetrical water content and soil chemical properties. Briefly, to determine the 173 soil organic C (SOC) content, we mixed a 0.5 g soil sample, 5 ml of concentrated 174 sulfuric acid (18.4 mol L⁻¹), and 5.0 ml of aqueous potassium dichromate (K₂Cr₂O₇) 175 $(0.8 \text{ mol } \text{L}^{-1})$ in a 100 ml test tube, then heated them in a paraffin oil pan at 190°C, 176 keeping them boiling for 5 minutes. After cooling, the 3 drops of phenanthroline indicator were added and then the sample was titrated with ferrous ammonium 177 sulphate (0.2 mol L⁻¹) until the color of the solution changed from brown to purple 178 179 to dark green (Nelson and Sommers, 1982; Chen et al. 2008; Edwards et al. 2013). 180 The soil ammonium-nitrogen (N) (NH_4^+-N) concentration and the nitrate-N (NO_3^-) -N) concentration were extracted with a potassium chloride (KCl) solution and 181 182 measured using a flow injection analyzer (SEAL Auto Analyzer 3; SEAL 183 Analytical, Inc., Mequon, WI, USA) (Liu et al. 2014). Soil samples (0-10 cm in 184 depth) from each collar were oven-dried at 105°C for at least 48 h and weighed to determine the SWC. The soil microbial biomass C (MBC) and microbial biomass 185 186 N (MBN) were measured using the chloroform-fumigation extraction method and calculated by subtracting extractable C and N contents in the unfumigated samples 187 188 from those in the fumigated samples (Liu et al., 2014; Rinnan et al., 2009). All extracts were stored at 4°C until further testing commenced. 189

190

191 **2.6 Statistical analysis**

192 All statistical analyses were performed using IBM SPSS Statistics 21.0 (IBM, 193 Armonk, NY, USA). All the data were normal as tested by the Shapiro-Wilk 194 method. A one-way analysis of variation (ANOVA) with LSD multiple range tests 195 were conducted to test the statistical significance of the differences in the mean values of the soil temperature, soil moisture, Rs, belowground biomass, SOC, 196 NH4⁺-N and NO3⁻-N concentrations, and MBC and MBN concentrations at depths 197 198 of 0 to 10 cm among the different treatments. A linear regression analysis was also used to test the relationship between the SWC and R_s . The relationship between R_s 199 200 and the soil temperature in each treatment was tested with an exponential function. We used Q_{10} to express the temperature sensitivity of R_s and calculated it 201 202 according to the following equations:

203 204

205

$$R_s = a e^{b T_s} \tag{1}$$

$$Q_{10} = e^{10b}$$
 (2)

206

207 Here, T_s is the soil temperature, a refers to the intercept of R_s when the soil 208 temperature is 0° C, and b is the temperature coefficient reflecting the temperature 209 sensitivity of R_s and is used to calculate Q_{10} (Lloyd and Taylor, 1994; Luo et al., 2001; Shen et al., 2015). 210 211 The relationship between R_s and the SWC was further conducted to fit the Gompertz function, which could express that the initial increase is rapid followed 212 213 by a leveling off: 214 $R_s = a^* e^{-b^*(\exp(-k^*SWC))}$ 215 (3)216 Here, a is an asymptote; the SWC halfway point of a/2 equals $-\ln(\ln(2)/b)/c$. The 217 turning point of the maximum rate of R_s increase equals ak/e when the SWC equals 218 219 $\ln(b)/k$. Thus, the thresholds of the changes in R_s with increasing SWC can be 220 obtained from the Gompertz function (Gompertz, 1825; Yin et al., 2003). A non-linear regression model was used to fit the relationship of R_s with both 221 222 soil temperature and soil moisture (Savage et al., 2009): 223 $R_s = (R_{\text{ref}} * Q_{10}^{(\text{Ts-10})/10}) * \beta^{(\text{SWC}_{0\text{PT}} - \text{SWC})^2}$ 224 (4)225 226 where T_s is the soil temperature, R_{ref} is R_s at 10°C and Q_{10} is a unitless expression 227 in R_s for each increase in 10°C. SWC is water content in 0 to 20 cm soil depth, 228 229 SWC_{0PT} is the optimal water content and β is a parameter modifying the shape of the quadratic fit. 230 231 Following the key factors selected by the stepwise regression method, a path analysis was used to examine the primary components directly and indirectly 232 233 affecting R_s by integrating both the stepwise linear regression module and Pearson 234 correlation analyses (Gefen et al., 2000). The statistical significances were set at P 235 < 0.05 for all tests, unless otherwise indicated. 236 **3** Results 237 238 3.1 Warming effects on soil features 239 The soil temperatures at a soil depth of 5 cm in the warmed plots were much higher 240 than those in the control plots (Figure 1). During growing season, the mean soil temperatures in the control, the moderately and acutely warmed plots were 21.9°C 241 (with the range of 14.0°C-31.0°C), 24.5°C (with the range of 15.1°C-35.3°C), and 242 25.0°C (with the range of 14.6°C-37. 9°C), respectively. The moderately and 243 244 acutely warmed plots were respectively increased by 2.6° C (P < 0.001) and 3.1° C 245 (P < 0.001) compared to those in the control plots. The SWC in the moderately and

acutely warmed plots (0–20 cm soil profile, v/v) were significantly reduced (P <246 247 0.001) compared to those in the control plots (Figure 1), indicating that warming 248 led to marked declines in the SWC, consequently enhancing drought stress. On 249 August 18, 19, 20 and 21, which were the dates that we measured R_s , the daily soil temperatures in the moderately and acutely warmed plots were around 3°C and 250 251 4°C higher than those in the control plots, respectively. All belowground variables (belowground biomass, soil N and microbial characteristics) were not significantly 252 253 altered by warming regimes at the site of this experiment (Supplementary Table 254 S1; P > 0.05). However, the organic soil carbon content tended to decrease with 255 long-term climatic warming. 256 257 3.2 Watering pulse effects on Rs The relationships between R_s and the SWC were well fitted to both the linear (\mathbb{R}^2) 258 = 0.83; P < 0.01) and quadratic functional models ($R^2 = 0.88$; P < 0.01, Figure 2A). 259 Moreover, the Gompertz function was well fitted to their relationship ($R^2 = 0.87$; 260 RMSE = 4.88) (Figure 2B). From the Gompertz functional curve, the R_s asymptote 261 value, as an estimated maximum, was 3.76 $\mu \cdot mol \cdot m^{-2} \cdot s^{-1}$ when the optimal SWC 262 was 22.85%. In the watering plots, an exponential function was well fitted to the 263 relationship between soil respiration and the soil temperatures ($R^2 = 0.31$; P < 0.01), 264 265 with a temperature sensitivity (Q_{10}) of 1.69. However, the exponential function was not well fitted in the control plots (Figure 3A). 266 267 268 3.3 Effects of warming regimes on Rs 269 Soil respiration was not significantly different among the warming treatments in July (Figure 4). During August, however, the average R_s values were 1.57, 1.06, 270 and 0.93 μ ·mol·m⁻²·s⁻¹ in the control, moderately warmed and acutely warmed 271 272 plots, respectively, indicating that warming regimes resulted in marked declines 273 (Figure 4). Changes in R_s differed significantly between the control and both 274 warmed plots (P < 0.01), while the R_s in the two warmed plots did not significantly 275 differ (P = 0.45). The relationships between the R_s and soil temperature of each 276 treatment were well fitted by the exponential equations (P < 0.05) (Figure 3B). The Q_{10} values were 1.88, 2.12 and 1.58 in the temperature controlled, moderate and 277 acute warming treatments, respectively (Figure 3B). 278

279

280 **3.4 Interactive effects on** R_s from soil temperature and soil water content

Across all watering and warming treatments, generally, a high temperature led to an increase in R_s under ample soil moisture, whereas R_s was limited under a soil water deficit. A non-linear regression mode was well fitted to the relationship of R_s with both soil temperature and soil moisture in the control plots ($R^2 = 0.404$, RMSE

- = 0.596). Based on the functional curve, the key parameters were obtained: $R_{\rm ref}$, a
- 286 R_s at 10°C, was 0.73 μ ·mol·m⁻²·s⁻¹; Q_{10} , a unitless expression in R_s for each

increase in 10°C, was 1.80; and β , a parameter modifying the shape of the quadratic fit, was 0.001 (Figure 5).

289

290 **3.5 Effects of multiple factors on** *R***s: a path analysis**

Based on a stepwise regression analysis of the relationships between the R_s and 291 292 multiple factors, four key factors were screened: soil temperature, soil moisture, belowground biomass and SOC. Their effects on R_s were further determined by a 293 294 path analysis. The results showed that soil moisture and soil temperature were two 295 major direct factors controlling R_s (the two direct path coefficients were 0.72 and 296 0.55, respectively). SOC had the highest indirect effect on R_s (the indirect path coefficient was 0.57). Soil moisture highly correlated with R_s (R = 0.78, P < 0.01; 297 298 Supplementary Table S2, Figure 6), indicating again that the soil water status may 299 impose the greatest effect on the carbon release from soil in the desert grassland. 300

301 4. Discussion

302 4.1 Warming effects on Rs

303 Previous studies have shown positive R_s responses to increased soil temperatures 304 below a critical high temperature (e.g., Carey et al., 2016; Drewitt et al., 2002; Gaumont-Guay et al., 2006; Meyer et al., 2018). However, in the current study site, 305 306 the climatic warming finally reduced the R_s by 32.5% and 40.8% under long-term 307 versus short-term climatic warming conditions in the desert dryland, respectively, which chiefly confirmed our first hypothesis. In a semiarid grassland on the Loess 308 309 Plateau of China, the total R_s was also constrained substantially by a field manipulative experiment (Fang et al., 2018). This result may have been caused by 310 the following factors. First, high temperatures may cause thermal stress on 311 312 microbes and subsequently reduce microbial respiration (Chang et al., 2012; Dacal et al., 2019). For instance, in an alpine steppe on the Tibetan Plateau, microbial 313 314 respiration was significantly reduced when the temperature rose to 30°C (Chang et al., 2012). Second, in the desert grassland, where water is often limited, the SWC 315 316 becomes the primary factor affecting R_s (Supplementary Table S2; Figure 6), while 317 warming can cause greater evapotranspiration, consequently lessening soil moisture (Figure 1), and finally reducing R_s (Munson et al., 2009; Wan et al., 2007; 318 319 Yan et al., 2013). Third, R_s may acclimatize to warming at high temperatures; however, root activities and plant growth can decrease with increasing 320 321 temperatures above an optimum level, which indirectly reduces R_s (Carey et al., 322 2017; Liu et al., 2016; Luo et al., 2001; Wan et al., 2007). Nevertheless, the drastic 323 declines in R_s under both long-term and short-term climatic warming regimes in 324 the desert dryland ecosystem may be driven by multiple factors, including the 325 ecosystem type, time and soil features (Liu et al., 2016; Wan et al., 2007; Meyer et al., 2018; Thakur et al., 2019). 326 327

328 4.2 Interactive effect of soil water status and temperature

329 As stated above, in an arid ecosystem, soil water deficit is a primary factor 330 inhibiting soil carbon release (Supplementary Table S2; Figure 6; Liu et al., 2016; 331 Munson et al., 2009; Yan et al., 2013). Thus, R_s increases with increasing soil 332 moisture. However, it could be leveled off or decreased when soil moisture exceeds 333 an optimal level for the soil carbon release (Huxman et al., 2004; Moyano et al., 2013; Wang et al., 2014). Thus, the relationship between R_s and SWC may be well 334 335 fitted to the Gompertz function (Gompertz, 1825; Yin et al., 2003) or the parabolic 336 curve model, which can be confirmed by the present results in the native arid desert 337 ecosystem (Figure 2). As indicated by Tucker and Reed (2016), soil water deficit can shrink the R_s itself and its response to temperature, suggesting the changes in 338 339 R_s may be determined simultaneously by both soil temperature and water status 340 (Janssens et al., 2001; Yan et al., 2013; Sierra et al., 2015). Moreover, in the present 341 experiment, the interactive effects of both factors were tested based on the 342 relationship of R_s with both soil temperature and soil moisture in a non-linear regression model (Savage et al., 2009). The model utilized was well fitted but 343 marginally so ($R^2 = 0.404$, RMSE = 0.596; Figure 5), indicating that both the soil 344 345 temperature and soil water content coordinated the changes in R_s . However, this 346 interaction may also be affected simultaneously by other abiotic and biotic factors, 347 such as soil nutrition availability and soil microbe activity (e.g., Camenzind et al., 2018; Karhu et al., 2014; Thakur et al., 2019; Zhang et al., 2014). 348

349

4.3 Key factors and the influence path

351 As noted above, R_s is affected by several abiotic and biotic factors. The current results showed that soil moisture and soil temperature were two major direct 352 353 factors, and SOC only was an indirect factor controlling R_s (Supplementary Table 354 S2, Figure 6). Importantly, soil moisture, with both the highest direct path 355 coefficients (0.7) and correlation coefficient (0.8) for R_s , may become the most 356 important factor affecting R_s in this desert steppe. These findings agree with the 357 previous results: The soil water status had a significantly positive effect on R_s (e.g., Chen et al., 2008; Liu et al., 2016; Xu et al., 2016). Furthermore, the soil moisture 358 359 condition may mediate the relationship between soil temperature and R_s and become the main key factor controlling R_s , especially in arid ecosystems, such as 360 361 desert steppes, where the available soil water is limited (Curiel et al., 2003; Fa et al., 2018; Jassal et al., 2008; Shen et al., 2015). Thus, under both the long-term and 362 363 short-term climatic warming regimes, the changes in $R_{\rm s}$ might be driven by both soil temperature and soil moisture as two key factors, and SOC as an indirect factor 364 365 and soil feature, thus mostly confirming our second hypothesis. This finding may provide new insight into how to control soil carbon release in arid ecosystems. 366 367

368 4.4 Warming effects on the variables belowground

Elevated temperature has been shown to increase or decrease root productivity and 369 370 biomass, depending on experimental sites and vegetation types (Bai et al., 2010; 371 Fan et al., 2009; Litton and Giardina, 2008; Wan et al., 2004). The decreased 372 availability of soil nutrients apparently limits root growth, finally inducing root 373 mortality and weakening responses to the elevated temperature (Eissenstat et al., 374 2000; Johnson et al., 2006; Wan et al., 2004; Zhang et al., 2014). In our experiment, no significantly different changes occurred in either soil NH4+-N or NO3-N 375 376 concentrations among the three treatments (Supplementary Table S1), and these 377 might be linked to the non-significant response of belowground biomass to 378 increasing temperature. Microbial biomass and its activities in soil depend on the 379 root biomass, SWC and soil N conditions (Liu et al., 2014; Rinnan et al., 2007; 380 Zhang et al., 2008; Zhang et al., 2014). Warming regimes had no significant effects on either MBC or MBN in the current study (Supplementary Table S1), which 381 382 might be due to the lack of any difference in the changes in basic soil nutrition 383 status, such as the N conditions, among the three warming treatments. This result 384 is consistent with that of Zhang et al. (2005) and Liu et al. (2015). Moreover, in the present study, SOC concentrations were not significantly affected by climatic 385 386 warming (Supplementary Table S1), which is inconsistent with the findings of 387 previous studies (Jobbágy and Jackson, 2000; Prietzel et al., 2016). However, there 388 was a decreasing trend evident with long-term warming. Crowther et al. (2016) reported a loss of approximately 30 ± 30 Pg of C in the upper soil horizons at 1°C 389 390 warming in global soil C stocks and projected a loss of 203 ± 161 Pg of C under 391 1°C of warming over 35 years. The C losses from soil moving into the atmosphere 392 may result in positive feedback regarding global warming (Bradford et al., 2016; Dacal et al., 2019; Jenkinson et al., 1991; Liu et al., 2016). However, SOC exerted 393 394 an indirect effect via a path analysis (Figure 6). For this difference, therefore, more 395 evidence needs to be provided to address the issue.

396 In conclusion, we determined the responses of R_s to field experimental long-397 term versus short-term climatic warming and watering pulses in a desert steppe 398 ecosystem. We found the following: i) both long- and short-term warming significantly reduced R_s during the peak growth season; ii) soil moisture was the 399 400 main factor controlling R_s in desert grassland; iii) R_s was significantly and 401 exponentially increased with soil temperature, with an interactive effect with soil 402 moisture; and iv) belowground biomass, soil nutrition variables and soil microbial 403 characteristics showed no significant changes after either long-term or short-term 404 climatic warming, although SOC might be expected to decrease with long-term climatic warming. These findings may be critical to predict soil CO₂ fluxes 405 406 and optimize C management work in arid and semiarid regions under the changing 407 climate. However, the patterns of the changes in soil C fluxes and the underlying 408 mechanism in response to climatic change are markedly complicated at various 409 spatial-temporal scales during growing season-from site and regional to global

410	scales, and from daily, seasonal and yearly to decade scales-and still need to be
411	investigated further (e.g., Ballantyne et al., 2017; Dacal et al., 2019; ; Meyer et al.,
412	2018; Romero-Olivares et al., 2017).
413	
414	Data availability. Currently, data can only be accessed in the form of Excel
415	spreadsheets via the corresponding author.
416	spreadeneed that the control on and and the
417	Supplement. The supplement related to this article is available online at:
418	
/10	Author contributions 7X and G7 conceived and designed this study HY 7X and
420	VS conducted this experiment and englysed the date All outhors wrote and
420	ris conducted this experiment and analysed the data. An authors wrote and
421	prooffead this manuscript.
422	
423	Competing interests. The authors declare that they have no conflict of interest.
424	
425	Acknowledgements. This research was jointly funded by National Natural
426	Science Foundation of China (31661143028, 41775108), and the Special Fund for
427	Meteorological Scientific Research in the Public Interest (GYHY201506001-3).
428	We greatly thank Feng Zhang, Bingrui Jia, Hui Wang, Minzheng Wang, He Song
429	for their loval help during the present study.
430	······································
/31	References
432	References Bai W Wan S Niu S Liu W Chen O Wang O Zhang W Han X and Li L
433	Increased temperature and precipitation interact to affect root production mortality and
434	turnover in a temperate steppe: implications for ecosystem C cycling. Glob. Change Biol.
435	16, 1306–1316, https://doi.org/10.1111/j.1365-2486.2009.02019.x, 2010.
436	Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., Shevliakova, E.,
437	Pan, Y., Poulter, B., Anav, A., and Friedlingstein, P.: Accelerating net terrestrial carbon
438	uptake during the warming hiatus due to reduced respiration. Nature Clim. Change, 7,
439	148-152, https://doi.org/10.1038/nclimate3204, 2017.
440	Bao, F., Zhou, G. S., Wang, F. Y., and Sui, X. H.: Partitioning soil respiration in a temperate
441	desert steppe in Inner Mongolia using exponential regression method. Soil Biol. Biochem.,
442	42, 2339–2341, https://doi.org/10.1016/j.soilbio.2010.08.033, 2010.
445	Boone, R. D., Nadelnoffer, K. J., Canary, J. D., and Kaye, J. P.: Roots exert a strong influence
444	bit the temperature sensitivity of soli respiration. Nature, 370 , $370-372$, https://doi.org/10.1038/25110.1008
445	Bradford M A Wieder W R Bonan G B Fierer N Raymond P A and Crowther T
447	W: Managing uncertainty in soil carbon feedbacks to climate change. Nature Clim.
448	Change, 6, 751–758, https://doi.org/10.1038/nclimate3071. 2016.
449	Cable, J. M., Ogle, K., Williams, D. G., Weltzin, J. F., and Huxman, T. E.: Soil texture drives
450	responses of soil respiration to precipitation pulses in the Sonoran Desert: Implications
451	for climate change. Ecosystems, 11, 961-979, https://doi.org/10.1007/s10021-008-9172-
150	x 2008

453	Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., and Rillig, M. C.: Nutrient
454	limitation of soil microbial processes in tropical forests. Ecol., Monogr., 88, 4-21,
455	https://doi.org/10.1002/ecm.1279, 2018.
456	Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J.
457	S., Emmett, B., Frey, S. D., Heskel, M. A., and Jiang, L.: Temperature response of soil
458	respiration largely unaltered with experimental warming. P. Natl. Acad. Sci. USA, 113,
459	13797–13802, https://doi.org/10.1073/pnas.1605365113, 2016.
460	Chang, X., Wang, S., Luo, C., Zhang, Z., Duan, J., Zhu, X., Lin, Q., and Xu, B.: Responses of
461	soil microbial respiration to thermal stress in alpine steppe on the Tibetan plateau. Euro.
462	J. Soil Sci., 63, 325-331, https://doi.org/10.1111/j.1365-2389.2012.01441.x, 2012.
463	Chen, S. P., Lin, G. H., Huang, J. H., and He, M.: Responses of soil respiration to simulated
464	precipitation pulses in semiarid steppe under different grazing regimes. J. Plant Ecol., 1,
465	237-246, https://doi.org/10.1093/jpe/rtn020, 2008.
466	Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller,
467	M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., and Blair, J. M.: Quantifying
468	global soil carbon losses in response to warming. Nature, 540, 104–108,
469	https://doi.org/10.1038/nature20150, 2016.
470	Curiel, J. C., Janssens, I. A, Carrara, A., Meiresonne, L., and Ceulemans, R.: Interactive effects
471	of temperature and precipitation on soil respiration in a temperate maritime pine
472	forest. Tree Physiol., 23, 1263–1270, https://doi.org/10.1093/treephys/23.18.1263, 2003.
473	Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T, and García-Palacios, P.: Soil microbial
474	respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol., 3, 232-
475	238, https://doi.org/10.1038/s41559-018-0770-5, 2019.
476	Drewitt, G. B., Black, T. A., Nesic, Z., Humphreys, E. R., Jork, E. M., Swanson, R., Ethier, G.
477	J., Griffis, T., and Morgenstern, K.: Measuring forest floor CO ₂ fluxes in a Douglas-fir
478	forest. Agric., For. Meteorol., 110, 299–317, <u>https://doi.org/10.1016/S0168-</u>
479	<u>1923(01)00294-5</u> , 2002.
480	Edwards, K. A. and Jfferies, R. L.: Inter-annual and seasonal dynamics of soil microbial
481	biomass and nutrients in wet and dry low-Arctic sedge meadows. Soil Biol. Biochem., 57,
482	83–90, <u>https://doi.org/10.1016/j.soilbio.2012.07.018</u> , 2013.
483	Eissenstat, D. M, Wells, C. E, Yanai, R. D, and Whitbeck, J. L.: Research view: Building roots
484	in a changing environment: Implications for root longevity. New Phytol., 147, 33–42.
485	
486	Fa, K., Zhang, Y., Lei, G., Wu, B., Qin, S., Liu, J., Feng, W., and Lai, Z.: Underestimation of
48/	soil respiration in a desert ecosystem. Catena, 162 , $23-28$,
488	<u>nttps://doi.org/10.1016/j.catena.2017.11.019</u> , 2018.
489	Fan, J. W., Wang, K., Harris, W., Zhong, H. P., Hu, Z. M., Han, B., Zhang, W. Y., and Wang, J.
490	B.: Anocation of vegetation biomass across a climate-related gradient in the grassiands
491	of inner Mongolia. J. Arid Environ., /3, 521–528,
492	nups://doi.org/10.1016/j.jaridenv.2008.12.004, 2009.
495 404	Faikowski, r., Scholes, K. J., Boyle, E. E. A., Calladell, J., Callield, D., Elsel, J., Glubel, N., Hibbard K. Högherg P. Linder S. and Magkanzia F. T. The global carbon cycle: a test
494	of our knowledge of earth as a system Science 200 201 206
47J 196	https://doi.org/10.1126/science.200.5400.201.2000
490	Fang C Li F Pei I Ren I Gong Y Yuan 7 Ke W 7heng V Rai X and Ve I S.
498	Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic
499	respiration in a semi-arid environment Agric For Meteorol 248 440-457
())	respinsion in a semi-and environment. Agrie, 101. Meteoroli, 240 , $449-457$,

500	https://doi.org/10.1016/j.agrformet.2017.10.032, 2018.
501	Gaumont-Guay, D., Black, T. A., Griffis, T. J., Barr, A. G., Jassal, R. S., and Nesic, Z.:
502	Interpreting the dependence of soil respiration on soil temperature and water content in a
503	boreal aspen stand. Agric. For. Meteorol., 140, 220–235,
504	https://doi.org/10.1016/j.agrformet.2006.08.003, 2006.
505 506	Gefen, D., Straub, D., and Boudreau, M. C.: Structural equation modeling and regression:
500	Systems 4: 7 http://doi.org/10.17705/1CAIS.00407_2000
508	Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on
509	a new mode of determining the value of life contingencies. Philos. TR. Soc. London, 115,
510	513–583, https://doi.org/10.1098/rstl.1825.0026, 1825.
511	Han, G. X., Zhou, G. S., Xu, Z. Z., Yang, Y., Liu, J. L., and Shi, K.Q.: Soil temperature and
512	biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.)
513	agricultural ecosystem. Plant Soil, 291, 15–26, <u>https://doi.org/10.1007/s11104-006-9170-</u>
514	<u>8,</u> 2006.
515	Hoover, D. L., Knapp, A. K., and Smith, M. D.: The immediate and prolonged effects of
516	climate extremes on soil respiration in a mesic grassland. J. Geophys. ResBiogeosci.,
517	121, 1034-1044, http://dx.doi.org/10.1002/2015JG003256, 2016.
518	Hou, Y. H., Zhou, G. S., Xu, Z. Z., Liu, T., and Zhang, X. S.: Interactive effects of warming
519	and increased precipitation on community structure and composition in an annual forb
520	dominated desert steppe. PLoS one, 8, e70114.
521	http://dx.doi.org/10.1371/journal.pone.0070114, 2013.
522	Huxman, T. E., Snyder, K. A., Tissue, D., Leffler, A. J., Ogle, K., Pockman, W. T., Sandquist,
523	D. R., Potts, D. L., and Schwinning, S.: Precipitation pulses and carbon fluxes in semiarid
524	and arid ecosystems. Oecologia, 141, 254-268, http://dx.doi.org/10.1007/s00442-004-
525	1682-4, 2004.
526	IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II
527	and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
528	[Core Writing Team, Pachauri RK, Meyer LA (eds.)]. IPCC, Geneva, Switzerland, pp151.
529	Jassal, R. S., Black, T. A., Novak, M. D., Gaumont-Guay, D., and Nesic, Z.: Effect of soil water
530	stress on soil respiration and its temperature sensitivity in an 18-year-old temperate
531	Douglas-fir stand. Glob. Change Biol., 14, 1-14, http://dx.doi.org/10.1111/j.1365-
532	2486.2008.01573.x, 2008.
533	Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of CO2 emissions from soil in
534	response to global warming. Nature, 351, 304-306, http://dx.doi.org/10.1038/351304a0,
535	1991.
536	Jia, B., Zhou, G., Wang, Y., Wang, F., and Wang, X.: Effects of temperature and soil water-
537	content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner
538	Mongolia. J. Arid Environ., 67, 60-76, <u>http://dx.doi.org/10.1016/j.jaridenv.2006.02.002</u> ,
539	2006.

540	Janssens, I. A., Kowalski, A. S., and Ceulemans. R.: Forest floor CO2 fluxes estimated by eddy
541	covariance and chamber-based model. Agric. For. Meteorol. 106: 61-69,
542	http://dx.doi.org/10.1016/S0168-1923(00)00177-5, 2001.
545	Jonnson, M. G., Ryglewicz, P. I., Ingey, D. I., and Philips, D. L.: Elevated CO ₂ and elevated
544	temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New
545	Phytol., 170, 345-356, http://dx.doi.org/10.1111/j.1469-8137.2006.01658.x, 2006.
546	Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its
547	relation to climate and vegetation. Ecol. Appl., 10, 423-436,
548	https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.
549	Kang, L., Han, X. G., Zhang, Z. B., and Sun, O. J.: Grassland ecosystems in China: review of
550	current knowledge and research advancement. Philos. T. R. Soc. B, 362, 997-1008,
551	http://dx.doi.org/10.1098/rstb.2007.2029, 2007.
552	Karhu, K., Auffret, M. D., Dungait, J. A., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke,
553	J. A., Wookey, P. A., Agren, G. I., Sebastia, M. T., Gouriveau, F., Bergkvist, G., Meir, P.,
554	Nottingham, A. T., Salinas, N., and Hartley, I. P.: Temperature sensitivity of soil
555	respiration rates enhanced by microbial community response. Nature, 513, 81-84,
556	http://dx.doi.org/10.1038/nature13604, 2014.
557	Keith, H., Jacobsen, K. L., and Raison, R. J., Effects of soil phosphorus availability,
558	temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant
559	Soil, 190, 127-141, https://doi.org/10.1023/A:1004279300622, 1997.
560	Kwon, M. J., Natali, S. M., Hicks, C. E., Schuur, E. A., Steinhof, A., Crummer, K. G., Zimov,
561 562	N., Zimov, S. A., Heimann, M., and Kolle, O.: Mathias Göckedel Drainage enhances
562 563	respiration in tundra ecosystems. Glob. Change Biol., DOI:10.1111/gcb.14578. In Press.
564	2019.
565	Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration. Funct. Ecol., 8,
566	315-323, http://dx.doi.org/10.2307/2389824, 1994.
567	Li, H. J., Yan, J. X., Yue, X. F., and Wang, M. B.: Significance of soil temperature and moisture
568	for soil respiration in a Chinese mountain area. Agric. For. Meteorol., 148, 490-503,
569	http://dx.doi.org/10.1016/j.agrformet.2007.10.009, 2008.
570	Lin, X. W., Zhang, Z. H., Wang, S. P., Hu, Y. G., Xu, G. P., Luo, C. Y., Chang, X. F., Duan, J.
571	C., Lin, Q. Y., Xu, B., Wang, Y. F., Zhao, X. Q., and Xie, Z. B.: Response of ecosystem
572	respiration to warming and grazing during the growing seasons in the alpine meadow on
573	the Tibetan plateau. Agric. For. Meteorol., 151, 792-802,
574	http://dx.doi.org/10.1016/j.agrformet.2011.01.009, 2011.
575	Litton, C. M. and Giardina, C. P.: Below-ground carbon flux and partitioning: global patterns
576	and response to temperature. Funct. Ecol., 22, 941-954, http://dx.doi.org/10.1111/i.1365-
577	2435.2008.01479.x, 2008.

578	Liu, L. T., Hu, C. S., Yang, P. P., Ju, Z. Q., Olesen, J. E., and Tang, J. W.: Effects of experimental
579	warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of
580	winter wheat-soybean/fallow. Agric. For. Meteorol., 207, 38-47,
581	https://doi.org/10.1016/j.agrformet.2015.03.013, 2015.
582	Liu, L., Wang, X., Lajeunesse, M. J., Miao, G., Piao, S., Wan, S., Wu, Y., Wang, Z., Yang, S.,
583	Li, P. and Deng, M.: A cross-biome synthesis of soil respiration and its determinants under
584	simulated precipitation changes. Glob. Change Biol., 22, 1394-1405,
585	http://dx.doi.org/10.1111/gcb.13156, 2016a.
586	Liu, T., Xu, Z. Z., Hou, Y. H., and Zhou, G. S.: Effects of warming and changing precipitation
587	rates on soil respiration over two years in a desert steppe of northern China. Plant Soil,
588	400, 15-27, http://dx.doi.org/10.1007/s11104-015-2705-0, 2016b.
589	Liu, W. X., Jiang, L., Hu, S. J., Li, L. H., Liu, L. L., and Wan, S. Q.: Decoupling of soil
590	microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe.
591	Soil Biol. Biochem., 72, 116-122, http://dx.doi.org/10.1016/j.soilbio.2014.01.022, 2014.
592	Liu, W. X., Zhang, Z., and Wan, S. Q.: Predominant role of water in regulating soil and
593	microbial respiration and their responses to climate change in a semiarid grassland. Glob.
594	Change Biol., 15, 184-195, http://dx.doi.org/10.1111/j.1365-2486.2008.01728.x, 2009.
595	Liu, X. Z., Wan, S. Q., Su, B., Hui, D. F., and Luo, Y. Q.: Response of soil CO2 efflux to water
596	manipulation in a tallgrass prairie ecosystem. Plant Soil, 240, 213-223,
597	http://dx.doi.org/10.1023/a:1015744126533, 2002.
598	Luo, Y. Q., Wan, S. Q., Hui, D. F., and Wallace, L. L.: Acclimatization of soil respiration to
599	warming in a tall grass prairie. Nature, 413, 622-625, http://dx.doi.org/10.1038/35098065,
600	2001.
601	Ma, Y. C., Piao, S. L., Sun, Z. Z., Lin, X., Wang, T., Yue, C., and Yang, Y.: Stand ages regulate
602	the response of soil respiration to temperature in a Larix principis-rupprechtii plantation.
603	Agric. For. Meteorol., 184, 179-187, http://dx.doi.org/10.1016/j.agrformet.2013.10.008,
604	2014.
605	Maestre, F. T., Salguero-Gómez, R. and Quero, J. L.: It is getting hotter in here: determining
606	and projecting the impacts of global environmental change on drylands. Philos. T. R. Soc.
607	B., 367, 3062-3075, http://dx.doi.org/10.1098/rstb.2011.0323, 2012.
608	Meyer, N., Welp, G., and Amelung, W.: The temperature sensitivity (Q_{10}) of soil respiration:
609	controlling factors and spatial prediction at regional scale based on environmental soil
610	classes. Glob. Biogeochem. Cycle, 32, 306-323,
611	http://dx.doi.org/10.1002/2017GB005644, 2018.
612	Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to
613	moisture availability: an exploration of processes and models. Soil Biol. Biochem., 59,

614	72-85, http://dx.doi.org/10.1016/j.soilbio.2013.01.002, 2013.
615	Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Yuste, J. C., Don, A., Epron,
616	D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M.,
617	Rey, A., Ruamps, L., Subke, J. A., Thomsen, I. K., and Chenu, C.: The moisture response
618	of soil heterotrophic respiration: interaction with soil properties. Biogeosciences, 8, 1173-
619	1182, http://dx.doi.org/10.5194/bg-9-1173-2012, 2012.
620	Martins, C. S. C., Macdonald, C. A., Anderson, I. C., and Singh, B. K.: Feedback responses of
621	soil greenhouse gas emissions to climate change are modulated by soil characteristics in
622	dryland ecosystems. Soil Biol. Biochem., 100, 21-32,
623	http://dx.doi.org/10.1016/j.soilbio.2016.05.007, 2016.
624	Moncrieff, J. B., and Fang, C.: A model for soil CO ₂ production and transport 2: application to
625	a Florida Pinus elliotte plantation. Agric. For. Meteorol., 95, 237-256,
626	https://doi.org/10.1016/S0168-1923(99)00035-0, 1999.
627	Munson, S. M., Benton, T. J., Lauenroth, W. K., and Burke, I. C.: Soil carbon flux following
628	pulse precipitation events in the shortgrass steppe. Ecol. Res., 25, 205-211,
629	https://doi.org/10.1007/s11284-009-0651-0, 2009.
630	Nelson, D. W. and Sommers, L. E.: Dry combustion method using medium temperature
631	resistance furnace. In: Page AL, Miller RH, Keeney DR (eds). Methods of Soil Analysis,
632	Part 2. Chemical and Microbial Properties. Madison, WI: American Society of Agronomy
633	and Soil Science Society of America, 539-79, 1982.
634	Prietzel, J., Zimmermann, L., Schubert, A., and Christophel, D.: Organic matter losses in
635	German Alps forest soils since the 1970s most likely caused by warming. Nat. Geosci., 9,
636	543-548, http://dx.doi.org/10.1038/ngeo2732, 2016.
637	Rinnan, R., Michelsen, A., Bååth, E., and Jonasson, S.: Fifteen years of climate change
638	manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob.
639	Change Biol., 13, 28-39, http://dx.doi.org/10.1111/j.1365-2486.2006.01263.x,2007.
640	Rinnan, R., Stark, S., and Tolvanen, A.: Responses of vegetation and soil microbial
641	communities to warming and simulated herbivory in a subarctic heath. J. Ecol., 97, 788-
642	800, http://dx.doi.org/10.1111/j.1365-2745.2009.01506.x, 2009.
643	Reynolds, L. L., Johnson, B. R., Pfeifer-Meister, L., and Bridgham, S. D.: Soil respiration
644	response to climate change in Pacific Northwest prairies is mediated by a regional
645	Mediterranean climate gradient. Glob. Change Biol., 21:487-500,
646	http://dx.doi.org/10.1111/gcb.12732, 2015.
647	Romero-Olivares, A. L., Allison, S. D., and Treseder, K. K.: Soil microbes and their response
648	to experimental warming over time: A meta-analysis of field studies. Soil Biol. Biochem.,
649	107, 32-40, http://dx.doi.org/10.1016/j.soilbio.2016.12.026, 2017.

650	Ru, J., Zhou, Y., Hui, D., Zheng, M., and Wan, S.: Shifts of growing-season precipitation peaks
651	decrease soil respiration in a semiarid grassland. Glob. Change Biol., 24, 1001-1011,
652	http://dx.doi.org/10.1111/gcb.13941, 2018.
653	Savage, K., Davidson, E. A., Richardson, A. D., and Hollinger, D. Y.: Three scales of temporal
654	resolution from automated soil respiration measurements. Agric. For. Meteorol., 149:
655	2012-202, http://dx.doi.org/10.1016/j.agrformet.2009.07.008, 2009.
656	Schlesinger, W. H.: Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Evol. Syst., 8, 51-
657	81, http://dx.doi.org/10.1146/annurev.es.08.110177.000411, 1977.
658	Shen, Z. X., Li, Y. L., and Fu, G.: Response of soil respiration to short-term experimental
659	warming and precipitation pulses over the growing season in an alpine meadow on the
660	Northern Tibet. Appl. Soil Ecol., 90, 35-40,
661	http://dx.doi.org/10.1016/j.apsoil.2015.01.015, 2015.
662	Sierra C. A, Trumbore S. E, Davidson E. A, Vicca S., and Janssens I.: Sensitivity of
663	decomposition rates of soil organic matter with respect to simultaneous changes in
664	temperature and moisture. J. Adv. Model. Earth Syst., 7: 335–356,
665	http://dx.doi.org/10.1002/2014MS000358, 2015.
666	Song, W. M., Chen, S. P., Wu, B., Zhu, Y. J., Zhou, Y. D., Lu, Q., and Lin, G. H.: Simulated
667	rain addition modifies diurnal patterns and temperature sensitivities of autotrophic and
668	heterotrophic soil respiration in an arid desert ecosystem. Soil Biol. Biochem., 82, 143-
669	152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015.
669 670	152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M.,
669 670 671	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic
669 670 671 672 673	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem. 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019.
 669 670 671 672 673 674 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative
 669 670 671 672 673 674 675 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model
 669 670 671 672 673 674 675 676 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-
 669 670 671 672 673 674 675 676 677 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, <u>http://dx.doi.org/10.1007/s10533-016-0200-1</u>, 2016.
 669 670 671 672 673 674 675 676 677 678 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil
 669 670 671 672 673 674 675 676 677 678 679 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109,
 669 670 671 672 673 674 675 676 677 678 679 680 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014.
 669 670 671 672 673 674 675 676 677 678 679 680 681 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle,
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005.
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005. Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005. Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to elevated CO₂, air warming, and changing soil water availability in a model old-field
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005. Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to elevated CO₂, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol., 13, 2411-2424, http://dx.doi.org/10.1111/j.1365-
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005. Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to elevated CO₂, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol., 13, 2411-2424, http://dx.doi.org/10.1111/j.1365-2486.2007.01433.x, 2007.
 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 	 152, http://dx.doi.org/10.1016/j.soilbio.2014.12.020, 2015. Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic responses to elevated CO₂, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193, http://dx.doi.org/10.1016/j.soilbio.2019.04.020, 2019. Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry, 128: 155–169, http://dx.doi.org/10.1007/s10533-016-0200-1, 2016. Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil respiration and its components to drought stress. J. Soils Sedim., 14, 99-109, http://dx.doi.org/10.1007/s11368-013-0799-7, 2014. Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycle, 19, 1-13, http://dx.doi.org/10.1029/2004GB002315, 2005. Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to elevated CO₂, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol., 13, 2411-2424, http://dx.doi.org/10.1111/j.1365-2486.2007.01433.x, 2007. Wan, S. Q., Norby, R. J., Pregitzer, K. S., Ledford, J., and O'Neill, E. G.: CO₂ enrichment and

690	roots. New Phytol., 162, 437-446, http://dx.doi.org/10.1111/j.1469-8137.2004.01034.x,
691	2004.
692	Xu, Z., Hou, Y., Zhang, L., Tao, L., and Zhou, G.: Ecosystem responses to warming and
693	watering in typical and desert steppes. Sci., Rep., 6, 34801,
694	http://dx.doi.org/10.1038/srep34801, 2016.
695	Yan, M. F., Zhou, G. S., and Zhang, X. S.: Effects of irrigation on the soil CO ₂ efflux from
696	different poplar clone plantations in arid northwest China. Plant Soil, 375, 89-97,
697	http://dx.doi.org/10.1007/s11104-013-1944-1, 2013.
698	Yin, X., Goudriaan, J. A. N., Lantinga, E. A., Vos, J. A. N., and Spiertz, H. J.: A flexible
699	Gompertz function of determinate growth. Ann. Bot., 91, 361-371,
700	http://aob.oupjournals.org/cgi/doi/10.1093/aob/mcg029, 2003.
701	Yu, H. Y., Chen, Y. T., Xu, Z. Z., and Zhou, G. S.: Analysis of relationships among leaf
702	functional traits and economics spectrum of plant species in the desert steppe of Nei
703	Mongol. Chin. J. Plant Ecol., 38, 1029-1040, doi: 10.3724/SP.J.1258.2014.00097, 2014.
704	Zhang, C. P., Niu, D. C., Hall, S. J., Wen, H. Y., Li, X. D., Fu, H., Wan, C. G., and Elser, J. J.:
705	Effects of simulated nitrogen deposition on soil respiration components and their
706	temperature sensitivities in a semiarid grassland. Soil Biol. Biochem., 75, 113-123,
707	http://dx.doi.org/10.1016/j.soilbio.2014.04.013, 2014.
708	Zhang, N. L., Wan, S. Q., Li, L. H., Bi, J., Zhao, M. M., and Ma, K. P.: Impacts of urea N
709	addition on soil microbial community in a semi-arid temperate steppe in northern China.
710	Plant Soil, 311, 19-28, http://dx.doi.org/10.1007/s11104-008-9650-0, 2008.
711	Zhang, W., Parker, K. M., Luo, Y., Wan, S., Wallace, L. L., and Hu, S.: Soil microbial responses
712	to experimental warming and clipping in a tallgrass prairie. Glob. Change Biol., 11, 266-
713	277, http://dx.doi.org/10.1111/j.1365-2486.2005.00902.x, 2005.

714 Figure legends

715 Figure 1. Effects of warming on the soil temperature and soil moisture during the 716 growth peak in 2014 (Mean \pm SE). Mean daily values were presented (n = 120). 717 The mean values with the same lowercase letters on the SE bars are not different 718 at P < 0.05 according to LSD multiple range tests (P values and F ratios are shown 719 inside). Figure 2. Relationship between R_s and soil water content based on a linear (black 720 721 line) and a quadratic (dotted line) functional model (A), and Gompertz functional 722 model (B). Close and open circles denote the data in 2014 and 2017, respectively. 723 The close red circles indicate data used for the initial R_s response to SWC. The one 724 open triangle may be an outlier point due to some errors such as soil animal 725 appearance, but it does not notably affect the functional fitting when removing it (ref. Figure S2). Based on Gompertz functional curve, the R_s asymptote value, as 726 an estimated maximum, is 3.76 μ ·mol·m⁻²·s⁻¹ when the optimal SWC is 22.85% 727 [The red line denotes the initial R_s response to SWC; the blue line denotes R_s = 728 729 constant value of the maximum estimated by the asymptote value; and the intersection of the two lines represents a point (the blue arrow) at which R_s initially 730 731 levelled off]. Note, we measured the R_s during 9:00-10:00 in these cloudless days 732 with calm/gentle wind in order to maintain other environmental factors such as soil 733 temperature and radiation to relatively stable and constant (n = 92). 734 Figure 3. The relationships between soil respiration and soil temperature under 735 both watering (n = 23-25, A), and warming treatments (n=28-33, B) (Mean \pm SE). Figure 4. Effects of warming regimes on soil respiration in 2014 (mean \pm SE), the 736 737 mean values with the same lowercase letters on the SE bars are not different at P < 0.05 according to LSD multiple range tests (P values and F ratios are shown 738 739 inside). 740 Figure 5. An interactive relationship of soil respiration with both soil temperature (Ts) and soil water content (SWC) based on a nonlinear mixed model (R_s = 741 $(0.733*1.796^{(Ts-10)/10})*\beta^{(0.229-SWC)^2}$). The data were used in control plots in the 742 warming experiment. The optimal SWC of 0.229 was estimated by the Gompertz 743 744 functional curve (see Figure 2B). Figure 6. A diagram of the effects of key environmental factors on soil respiration 745 and their relationships. Blue double-headed arrows represent the relationships 746 747 between the key environmental factors, data on the arrows are correlation 748 coefficients. Black arrows represent the relationships between soil respiration and 749 the key environmental factors, data on the arrows are correlation coefficients (bold) and direct path coefficients (italic), respectively. *, P < 0.05; **, P < 0.01, n = 12. 750 For other details, see Supplementary Table S2. 751 752

- 765 Figure 1. Effects of warming on the soil temperature and soil moisture during the growth
- peak in 2014 (Mean \pm SE). Mean daily values were presented (n = 120). The mean values with
- 767 the same lowercase letters on the SE bars are not different at P < 0.05 according to LSD
- 768 multiple range tests (*P* values and F ratios are shown inside).

- 785 Figure 4. Effects of warming regimes on soil respiration in 2014 (mean \pm SE), the mean values
- 786 with the same lowercase letters on the SE bars are not different at P < 0.05 according to LSD
- 787 multiple range tests (*P* values and F ratios are shown inside).

788 Figure 5. An interactive relationship of soil respiration with both soil temperature (Ts) and soil

789 water content (SWC) based on a nonlinear mixed model ($R_s = (0.733*1.796^{(T_s-10)/10})*\beta^{(0.229-SWC)^2}$,

B). The data were used in control plots in the warming experiment. The optimal SWC of 0.229

791 was estimated by the Gompertz functional curve (see Figure 2B).

792

- **Figure 6.** A diagram of the effects of key environmental factors on soil respiration and their relationships. Blue double-headed arrows represent the relationships between the key
- environmental factors, data on the arrows are correlation coefficients. Black arrows represent
- the relationships between soil respiration and the key environmental factors, data on the arrows
- are correlation coefficients (bold) and direct path coefficients (italic), respectively. *, P < 0.05;
- 798 **, P < 0.01, n = 12. For other details, see Supplementary Table S2.